Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Bis(6-thioxo-1,6-dihydropurinium) tetrachlorozincate(II)

Arto Valkonen,* Kari Ahonen and Erkki Kolehmainen

University of Jyväskylä, Department of Chemistry, PO Box 35, 40014 University of Jyväskylä, Finland
Correspondence e-mail: arto.valkonen@cc.jyu.fi

Received 2 May 2006
Accepted 24 May 2006
Online 23 June 2006
The title salt, $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}_{4} \mathrm{~S}\right)_{2}\left[\mathrm{ZnCl}_{4}\right]$, consists of two 6-thioxo-1,6dihydropurinium $\left(6 \mathrm{mpH}_{2}^{+}\right)$cations $(A$ and $B)$ and a tetrachlorozincate anion, which are held together by $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions. There is an anion- π interaction between one Cl atom of the $\left[\mathrm{ZnCl}_{4}\right]^{-}$anion and the pyrimidine ring of the $6 \mathrm{mpH}_{2}^{+}(B)$ cation. Intermolecular $\pi-\pi$ stacking interactions allow $6 \mathrm{mpH}_{2}{ }^{+}(A)$ cations to form antiparallel pairs. One interesting structural feature is the double $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ intermolecular hydrogen bonds between two $6 \mathrm{mpH}_{2}^{+}(A)$ cations. This kind of interaction, mimicking that of natural nucleobases, can be very valuable in designing new therapeutic purine derivatives.

Comment

6-Mercaptopurine (6 mpH ; 1,7-dihydro-6H-purine-6-thione) exists in solid and liquid states in the 6-thione form. It also has a tautomeric imine proton equilibrium between positions 7 and 9 of the imidazole ring (Pazderski et al., 2006), being found in the $\mathrm{N} 9-\mathrm{H}$ form in anhydrous $6 \mathrm{mpH}(\mathrm{Gyr}, 1991)$ but in the $\mathrm{N} 7-\mathrm{H}$ form in 6-mercaptopurine monohydrate (see the reaction scheme below) (Sletten et al., 1969; Brown, 1969). The 6-thioxo-1,6-dihydropurinium cation $\left(6 \mathrm{mpH}_{2}{ }^{+}\right)$, in which both the N7 and the N9 positions are protonated and the positive charge is shared by the imidazole N atoms, was previously confirmed by single-crystal X-ray diffraction and vibrational spectroscopy of 6-thioxo-1,6-dihydropurinium chloride (Perez-Ruiz et al., 1998).

Preparation and structural characterization of complexes of biologically active metals, such as zinc, with purines is one of our recent interests. In an attempt to prepare the zinc analogue of bis(6-mercaptopurinato)mercury(II) (Lavertue et al., 1976), we obtained to the title salt, (I).

There are two crystallographically independent planar $6 \mathrm{mpH}_{2}{ }^{+}$cations and one tetrachlorozincate anion in the asymmetric unit (Fig. 1). The pyrimidine H atoms of the $6 \mathrm{mpH}_{2}{ }^{+}$cations (A and B) are involved in $\mathrm{N} 1-\mathrm{H} \cdots \mathrm{Cl} 3$ and $\mathrm{N} 21-\mathrm{H} \cdots \mathrm{Cl} 2$ hydrogen bonds, respectively, the latter being much weaker (Desiraju \& Steiner, 1999), as seen from Table 2. There is also a weak short $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ contact between atoms C 2 and Cl 2 , generating an $R_{2}^{2}(7)$ graph-set motif (Bernstein et al., 1995) with the $\mathrm{N} 1-\mathrm{H} \cdots \mathrm{Cl} 3$ hydrogen bond.

(I)
$6 \mathrm{mpH}_{2}{ }^{+}$cations can form pairs in the crystalline state, regardless of the electrostatic force between their positive charges. Repulsion of similar charges is reduced by antiparallel geometry, and the cations are held together by $\pi-\pi$ stacking and possibly also by cation $-\pi$ interactions (Meyer et al., 2003). Such a pair of antiparallel-displaced $6 \mathrm{mpH}_{2}{ }^{+}(A)$ cations is shown in Fig. 2, around ($\frac{1}{2}, \frac{1}{2}, 1$), with an interplanar distance of 3.447 (3) \AA. The centroid-to-centroid distance of the six-membered aromatic rings is $3.584(3) \AA$. Cation $-\pi$ interactions in this pair may also exist, but because of the partial overlap of the $6 \mathrm{mpH}_{2}{ }^{+}(A)$ cations with positive charges at two ends, such interactions are not favoured. There is no $6 \mathrm{mpH}_{2}{ }^{+}(B)$ pair that has a rational centroid-to-centroid distance, but the $6 \mathrm{mpH}_{2}{ }^{+}(B)$ cation participates in an anion $-\pi$ interaction with atom Cl 1 (Fig. 1). The distance between the centroid of the pyrimidine ring and atom Cl1 is 3.247 (3) \AA, which is slightly longer than that observed in the 1,3,5-triazine complex (Demeshko et al., 2004). The angle between the $\mathrm{Cl} 1 \cdots$ centroid axis and the plane of the pyrimidine ring is 85°, and the $\mathrm{Cl} 1 \cdots$ centroid axis points away from atoms N 21 and N23.

Figure 1
The $6 \mathrm{mpH}_{2}^{+}$and $\left[\mathrm{ZnCl}_{4}\right]^{2-}$ components of (I), showing the atomlabelling scheme. Displacement ellipsoids were drawn at the 50% probability level and non-covalent interactions are illustrated with dashed lines.

Previous studies of tetrachlorozincates have shown that the $\mathrm{Zn}-\mathrm{Cl}$ bond lengths are not identical (Parvez \& Sabir, 1998; García-Raso et al., 1999). The environment around the anion, for example, the presence of hydrogen bonds or repulsions, influences appreciably the $\mathrm{Zn}-\mathrm{Cl}$ bond lengths and $\mathrm{Cl}-\mathrm{Zn}-$ Cl angles. In (I), however, no clear trend of such influences was detected (Table 1). For example, the fact that the $\mathrm{Zn}-\mathrm{Cl} 4$ bond is the longest does not meet the expectations derived from hydrogen-bonding effects (Table 2), because atom Cl4 accepts only one, rather weak, $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ contact.

Imidazole atoms N 7 and N 9 of the $6 \mathrm{mpH}_{2}{ }^{+}$cation share the positive charge (Perez-Ruiz et al., 1998). Therefore, the bonds involving atoms N7, N9, N27 and N29 in (I) are expected to be of about equal length. The N7-C8 and $\mathrm{N} 27-\mathrm{C} 28$ bonds (Table 1) are comparable to the $\mathrm{N} 7-\mathrm{C} 8$ distance in $6 \mathrm{mpH}_{2} \mathrm{Cl}$ (Pazderski et al., 2006), and the N9-C8 and N29-C28 bonds are slightly longer than the $\mathrm{N} 7-\mathrm{C} 8$ and $\mathrm{N} 27-\mathrm{C} 28$ bonds. However, all of these bond lengths in (I) are closer to one another than the analogous bonds in $6 \mathrm{mpH} \cdot \mathrm{H}_{2} \mathrm{O}$ and in anhydrous 6 mpH (Pazderski et al., 2006; Gyr, 1991). One interesting structural feature involving the imidazole N atoms is the double $\mathrm{N} 9-\mathrm{H} 9 \cdots \mathrm{~N} 3{ }^{\mathrm{ii}}$ intermolecular hydrogen-bond system (Table 2) between two $6 \mathrm{mpH}_{2}{ }^{+}(A)$ cations (shown at the centre of Fig. 2), generating an $R_{2}^{2}(8)$ graph-set motif. These cations are in the same plane and related by an inversion centre.

Sulfur is a weak atomic acceptor and it is often superseded in hydrogen-bond formation because of the presence of stronger acceptors (Desiraju \& Steiner, 1999). Certainly, some such interactions, e.g. N-H. .S (Dubler \& Gyr, 1988) and $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ (Cini et al., 2000), have been reported for 6 mpH compounds, but they are rather unusual. In (I), there is possibly a very weak $\mathrm{C} 28-\mathrm{H} 28 \cdots \mathrm{~S}^{\mathrm{V}} 6^{\mathrm{V}}$ interaction (Table 2). Atom S26 also forms a short contact [3.3929 (12) Å] to Cl4 at $\left(-x, \frac{1}{2}+y, \frac{3}{2}-z\right)$, which is shorter than the sum of van der Waals radii ($3.55 \AA$).

Figure 2
The packing of (I), viewed along the b axis. Hydrogen bonds are illustrated with dashed lines. [Symmetry code: (i) $-x+1, y-\frac{1}{2},-z+\frac{3}{2}$.]

Experimental

6-Mercaptopurine monohydrate ($119 \mathrm{mg}, 0.70 \mathrm{mmol}$) and zinc chloride ($48 \mathrm{mg}, 0.35 \mathrm{mmol}$) were dissolved in water $(50 \mathrm{ml})$. The mixture was stirred at room temperature for one hour, after which aqueous $2 \mathrm{M} \mathrm{HCl}(20 \mathrm{ml})$ was added and the resulting solution was left to stand. After one week, some crystals and a pale-yellow powder were formed, and these were removed from the solution; the powder was found to be mostly 6 -thioxo- 1,6 -dihydropurinium chloride, and the crystals were found to be 6-mercaptopurine monohydrate. After slow evaporation of the solution at room temperature over a period of three months, only a few colourless crystals of (I) were obtained. A similar synthetic route was tested unsuccessfully with cobalt(II) and cadmium(II) chlorides.

Crystal data

$\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}_{4} \mathrm{~S}\right)_{2}\left[\mathrm{ZnCl}_{4}\right]$
$M_{r}=513.55$
Monoclinic, $P 2_{1} / c$
$a=17.1397$ (5) £
$b=6.8500$ (2) \AA
$c=16.1142$ (5) \AA
$\beta=103.021$ (2) ${ }^{\circ}$
$V=1843.27(10) \AA^{3}$

Data collection

Bruker Kappa-APEX-II diffractometer
φ and ω scans
Absorption correction: multi-scan
(MULABS in PLATON;
Blessing, 1995; Spek, 2003)
$T_{\text {min }}=0.603, T_{\text {max }}=0.724$
$Z=4$
$D_{x}=1.851 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=2.15 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Block, colourless
$0.25 \times 0.15 \times 0.15 \mathrm{~mm}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.084$
$S=1.05$
4528 reflections
226 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0145 P)^{2} \\
&+3.7658 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.44 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.44 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

$\mathrm{Zn} 1-\mathrm{Cl} 1$	$2.2547(9)$	$\mathrm{N} 7-\mathrm{C} 8$	$1.323(4)$
$\mathrm{Zn} 1-\mathrm{Cl} 2$	$2.2776(10)$	$\mathrm{N} 9-\mathrm{C} 8$	$1.339(4)$
$\mathrm{Zn} 1-\mathrm{Cl} 3$	$2.2750(9)$	$\mathrm{N} 9-\mathrm{C} 4$	$1.368(4)$
$\mathrm{Zn} 1-\mathrm{Cl} 4$	$2.2861(9)$	$\mathrm{C} 24-\mathrm{C} 25$	$1.368(4)$
$\mathrm{S} 6-\mathrm{C} 6$	$1.647(4)$	$\mathrm{N} 27-\mathrm{C} 25$	$1.378(4)$
$\mathrm{S} 26-\mathrm{C} 26$	$1.655(3)$	$\mathrm{N} 27-\mathrm{C} 28$	$1.321(4)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.374(4)$	$\mathrm{N} 29-\mathrm{C} 28$	$1.334(4)$
$\mathrm{N} 7-\mathrm{C} 5$	$1.383(4)$	$\mathrm{N} 29-\mathrm{C} 24$	$1.368(4)$
$\mathrm{Cl} 1-\mathrm{Zn} 1-\mathrm{Cl} 3$	$109.44(4)$	$\mathrm{Cl} 1-\mathrm{Zn} 1-\mathrm{Cl} 4$	$109.33(3)$
$\mathrm{Cl} 1-\mathrm{Zn} 1-\mathrm{Cl} 2$	$114.54(4)$	$\mathrm{Cl} 3-\mathrm{Zn} 1-\mathrm{Cl} 4$	$107.60(4)$
$\mathrm{Cl} 3-\mathrm{Zn} 1-\mathrm{Cl} 2$	$110.12(3)$	$\mathrm{Cl} 2-\mathrm{Zn} 1-\mathrm{Cl} 4$	$105.54(4)$

All H atoms were found in difference density maps, but were placed in ideal calculated positions and allowed to ride on their parent atoms at distances of $0.88(\mathrm{~N}-\mathrm{H})$ and $0.95 \AA(\mathrm{C}-\mathrm{H})$, with $U_{\text {iso }}(\mathrm{H})$ values of $1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$.

Data collection: COLLECT (Bruker, 2004); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia,

Table 2
Hydrogen-bond geometry $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 3$	0.88	2.34	3.180 (3)	159
$\mathrm{N} 21-\mathrm{H} 21 \cdots \mathrm{Cl} 2$	0.88	2.76	3.245 (3)	116
N7-H7 ${ }^{\text {a }}$ N23 ${ }^{\text {i }}$	0.88	2.01	2.811 (4)	151
$\mathrm{N} 9-\mathrm{H} 9 \cdots \mathrm{~N} 3^{\text {ii }}$	0.88	2.00	2.857 (4)	163
$\mathrm{N} 21-\mathrm{H} 21 \cdots \mathrm{Cl} 4^{\text {iii }}$	0.88	2.45	3.216 (3)	146
$\mathrm{N} 27-\mathrm{H} 27 \cdots \mathrm{Cl}^{\text {iv }}$	0.88	2.31	3.184 (3)	174
$\mathrm{N} 29-\mathrm{H} 29 \cdots \mathrm{Cl}^{\text {v }}$	0.88	2.30	3.134 (3)	159
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{Cl} 2$	0.95	2.58	3.432 (3)	149
$\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{Cl} 4^{\text {vi }}$	0.95	2.61	3.540 (3)	165
C28-H28.. S $26{ }^{\text {v }}$	0.95	2.78	3.556 (4)	140

Symmetry codes: (i) $-x+1, y-\frac{1}{2},-z+\frac{3}{2}$; (ii) $-x+1,-y+2,-z+2$; (iii) $x, y+1, z$; (iv) $-x,-y+1,-z+1$; (v) $x,-y+\frac{3}{2}, z-\frac{1}{2}$; (vi) $-x+1,-y+1,-z+2$.
1997); software used to prepare material for publication: SHELXL97.

The authors thank Dr Radek Marek from Masaryk University, Brno, Czech Republic, for co-operation and especially for sharing his knowledge about the chemistry of purines. We also express our gratitude to Professors Maija Nissinen, Kari Rissanen and Reijo Sillanpää for their vital help in data refinement and computing molecular graphics.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OB3005). Services for accessing these data are described at the back of the journal.

References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Brown, G. M. (1969). Acta Cryst. B25, 1338-1353.
Bruker (2004). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.
Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. \& Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
Cini, R., Corsini, M. \& Cavaglioni, A. (2000). Inorg. Chem. 39, 5874-5878.
Demeshko, S., Dechert, S. \& Meyer, F. (2004). J. Am. Chem. Soc. 126, 45084509.

Desiraju, G. R. \& Steiner, T. (1999). The Weak Hydrogen Bond, pp. 12-16, 215-221 and 227-231. Oxford University Press.
Dubler, E. \& Gyr, E. (1988). Inorg. Chem. 27, 1466-1473.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
García-Raso, Á., Fiol, J. J., Bádenas, F., Solans, X. \& Font-Bardia, M. (1999). Polyhedron, 18, 3077-3083.
Gyr, E. (1991). PhD thesis, University of Zürich, Switzerland.
Lavertue, P., Hubert, J. \& Beauchamp, A. L. (1976). Inorg. Chem. 15, 322325.

Meyer, E. A., Castellano, R. K. \& Diederich, F. (2003). Angew. Chem. Int. Ed. 42, 1210-1250.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Parvez, M. \& Sabir, A. P. (1998). Acta Cryst. C54, 933-935.
Pazderski, L., Łakomska, I., Wojtczak, A., Szłyk, E., Sitkowski, J., Kozerski, L., Kamieński, B., Koźmiński, W., Tousek, J. \& Marek, R. (2006). J. Mol. Struct. 785, 205-215.
Perez-Ruiz, E., Delarbre, J. L., Maury, L., Selkti, M. \& Tomas, A. (1998). J. Can. Anal. Sci. Spectrosc. 43, 59-67.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Sletten, E., Sletten, J. \& Jensen, L. H. (1969). Acta Cryst. B25, 1330-1338. Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

